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ABSTRACT

In the present world of competition there is a race of existence in which those are
having will come to forward succeeded. The thesis serves as a link between theocrat-
ic and practical work, with this willing I joined this particular thesis. In this thesis,
we have explored the analytical solutions to some selected nonlinear evolution equa-
tions by employing some interesting approaches.
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Chapter 01

PRELIMINARIES

1.1 INTRODUCTION

Partial differential equations are of extensive interest because of their connection
with phenomena in the physical world. These equations are also used to formulate
models of the most basic theories underlying physics and engineering. For exam-
ples, they are foundational in the modern scientific understanding of sound, heat,
diffusion, electrostatics, electrodynamics, fluid dynamics, elasticity, general relativi-
ty, and quantum mechanics. Their field is vast in size and diversity.

1.2 BACKGROUND AND MOTIVATIONS

Most of the work has been done with the NLEEs for the last five decades and is
growing day by day due to their wide variety of applications to many physical pro-
cesses of nature that occur in the different fields of applied and physical sciences.
NLEEs are generally used to determine a lot of numerous significant physical phe-
nomena showing up in plasma material science, power, electro a hereditary and so
on.

During the recent years, the exact and analytical solutions encouraged investiga-
tors to huge size of research work to examine the nonlinear models.

1.3 ANALYTICAL METHODS

In the last few decades, the analytical solutions to NLEEs have attracted much
attention to the many researchers. In the current era of applied science and technol-
ogy, both mathematician and physicist are mostly engaged in this area to establish
supplementary approaches. In this study, we will use different analytical techniques
to solve nonlinear models.

Here, we will demonstrate only those techniques which applied successfully in
this thesis which are the generalized exponential rational function method [1–3].
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1.3.1 The Classical Khater Method

First consider the NLPDE of the form

Z

(
u,
∂u

∂t
,
∂u

∂x
,
∂2u

∂x2
, ...
)

= 0, (1.3.1)

where Z is the polynomial of u(x, t).
Then we consider the traveling wave transformation of the form

u(x, y, t) = U(ξ) ξ = x− ωt, (1.3.2)

by using this transformation Eq. (1.3.1) reduce to nonlinear ODE of the form

Q (U,U ′, U ′′, U ′′′, ...) = 0, (1.3.3)

where Q is the polynomial in U(ξ) along with its derivatives w.r.t ξ.
The solution of Eq. (1.3.3) is of the form

U(ξ) =
n∑
i=0

λia
if(ξ), (1.3.4)

where the arbitrary constants λi, i = 0, 1, ..., N are to be determined later. By ho-
mogenous balancing principle the positive integer n can be determined from Eq.
(1.3.3).
The Functions f(ξ) satisfy the following equation

f ′(ξ) =
1

log(a)

(
αa−f(ξ) + β + γaf(ξ)

)
. (1.3.5)

Using Eq. (1.3.4) and its desired derivatives along with Eq.(1.3.5) into Eq. (1.3.3)
and by collecting the coefficients of aif(ξ) and equating them to zero we get an alge-
braic system. This system can be solved with the help of computer package programs
and the values of parameters can be obtained. By substituting all values of parameters
into Eq. (1.3.4), we get the solutions of Eq. (1.3.1) given as [1].

1.4 STRUCTURE OF THE THESIS

The purpose of this thesis is to discuss several analytical methods for obtaining
the solution of NLEE in various disciplines. We use a very simple transformation for
description of various significant methods. The chapter one included introduction
of NLEEs, background and motivation, analytical methods such as, the generalized
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exponential rational function method, classical khater method and the extended mod-
ified AEM method have been explained in detail.

1.5 SUMMARY

In this chapter, the brief introduction of NLEEs and different analytical meth-
ods namely the generalized exponential rational function method, classical khater
method and the extended modified AEM method that are going to be utilized in this
study have been explained.
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Chapter 02

THE (2+1)-D CHAFEE-INFANTE MODEL

2.1 INTRODUCTION

The (2+1)-d Chafee-Infante model read as [?]

(
αu3 − αu− uxxx

)
+ uxt + σuyy = 0, (2.1.1)

where α is the coefficient of diffusion and σ is the degradation coefficient.

2.2 MATHEMATICAL ANALYSIS

Consider the wave transformation

u(x, y, t) = u(ξ), ξ = x+ y − ct, (2.2.1)

where c is the speed of the travelling wave.

2.2.1 Applications

According to extended modified AEM method the solution is of the form

u = a0 + a1ψ(ξ) +
b1
ψ(ξ)

+ d1
ψ′(ξ)

ψ(ξ)
, (2.2.2)

where a0, a1, a0, b1 and d1 are the constant to be determined.

2.3 GRAPHICAL REPRESENTATION

The 3D, contour and 2D graphs visualizes the nature of nonlinear waves con-
structed from Eq. (2.1.1).
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Figure 2.1: u1(x, y, t) : α = 2, b1 = 1, c = −10, y = 1, δ1 = −6, δ3 = 2.

2.4 SUMMARY

In our work, the extended modified AEM method and the classical khater method
are successfully employed to get some new exact solitary wave solutions of the (2+1)-
d Chaffee-Infante equation.
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Chapter 03

THE GENERALIZED NLS MODEL

3.1 INTRODUCTION

The main objective of this chapter is to attain some new exact solutions to the
generalized coupled NLS-KdV equations by employing GERF method [?]. The gen-
eralized coupled NLS-KdV equations [?] read as

λ2P |P |2 + λ3PQ+ iPt + λ1Pxx = 0,

β3 |P |2 x +Qt + β1QQx + β2Qxxx = 0,
(3.1.1)

where β1, β2, β3, λ1, λ2 and λ3 are real constants.

3.2 MATHEMATICAL ANALYSIS

Consider the transformation

P (x, t) = P (φ)ei(η2t+xω2),

Q(x, t) = Q(φ), φ = η1t+ xω1,
(3.2.1)

where ωi and ηi, i = 1, 2 are the speed of wave, wave number and frequency of the
soliton respectively.

3.2.1 Applications

According to GERF method we assume the solution of Eq.(??) and Eq.(??) re-
spectively as

P (φ) = a0 +
n∑
i=1

aiψ(φ)
i +

n∑
i=1

bi
ψ(φ)i

,

Q(φ) = c0 +
m∑
i=1

ciψ(φ)
i +

m∑
i=1

di
ψ(φ)i

,

(3.2.2)
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CONCLUSIONS

The nonlinear evolution equations are extremely useful in present era of research
and technology for illustrating a wide range of complex natural phenomena. Most
of the real-world physical models are governed by the nonlinear evolution equations.
Consequently, the problem for developing new techniques to solve such nonlinear
models are very crucial because they are capable to elucidate the real features in
mathematical physics.
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